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ABSTRACT 

 

Near-infrared spectroscopy (NIRS) coupled with multivariate statistical analysis was assessed as a rapid method of 

detecting honey adulteration in the Philippines. The sample set contained 288 spectra of authentic and adulterated 

honey samples obtained from six farms in the provinces of Benguet and La Union. Spectral data were pre-processed 

using ParLeS software in which partial least squares regression (PLSR) analysis was employed. Multivariate 

analyses like PLSR, principal component analysis (PCA) and linear discriminant analysis (LDA) were performed to 

predict the level of adulteration, reducing sugar content, and apparent sucrose content. Calibration models for 

predicting adulteration level (from none to highly adulterated) gave the best results using PLSR on spectral data 

without pretreatment (calibration R2 > 0.93, validation R2 > 0.94). Principal components (PCs) of the spectral data 

were extracted using PCA wherein the NIR absorbance bands for sugar (836-840 nm and 978-980 nm) and water 

(938-940 nm, 978-980 nm, 984-986 nm and 992-994 nm) in honey were identified. Using LDA, calibration models 

were able to classify honey based on level of adulteration and apparent sucrose; overall accuracies of 99.5% and 

100% were observed, respectively. When validated, however, the LDA models could not detect pure honey (out of 6 

and 11 samples, respectively), while 86.7% and 100% of adulterated honey could be detected, respectively. Further 

sampling is recommended to strengthen LDA models. 
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INTRODUCTION 
 
Honey is a natural substance produced by honey 
bees and is widely used as a sweetener and in 
traditional medicine. Global demand has been 
increasing over the years, but production has 
remained relatively constant except for China where 
production volume doubled in the period 1993-2013 
(Ulberth, 2016). Due to high demand and inadequate 
production, honey has become one of the most 
common targets for economically motivated 
adulteration (EMA), also known as food fraud 
(Moore et al., 2012). The price per unit of honey in 
the UK in 2023 was more than 13 times higher than 
the price of sugar (Statista, 2023); this price 
difference is a strong driver for EMA, and is 
projected to increase in the next 5 years (Statista, 
2023). International standards require that honey 
must be free of organic or inorganic materials that 
are not part of its natural composition (CAC, 2022; 
European Commission, 2002). However, EMA of 
honey includes dilution or the use of extenders, 
supplemental feeding of sugar syrups to bees to 
increase production, the use of unapproved or 
inappropriate drugs and chemicals on bees, and 
hiding the true country of origin to avoid fees, 
testing or product bans. An example of the latter 
practice occurred between March 2002 and April 
2008, when honey originating from China was 
misdeclared as coming from Russia, India and 
several Asian countries, including the Philippines. 
This scheme was devised to avoid anti-dumping fees 
close to US$80 million (Strayer et al., 2014). A 
literature review by Fakhlaei et al. (2020) showed 
that consuming fraudulent products also has 
negative effects on human health, since this can lead 
to diabetes, obesity, and high blood pressure. In-
vivo studies (human or animal subjects) also show 
negative effects of adulterants on internal organs 
such as the stomach, liver, and kidney. 
 
The major components of honey include moisture 
(20 g per 100 g), fructose (37-39 g per 100 g), 
glucose (30-32 g per 100 g), sucrose (0.5-2.0 g per 
100 g) and ash (0.2 g per 100 g). The ratio of 
fructose to glucose is generally 1.2 : 1.0. Minor 
components include proteins, organic acids, 
vitamins and minerals, and phenolic and volatile 

compounds. The proportions of these compounds in 
honey are greatly dependent on the nectar 
composition of flora accessible to bees. These in 
turn are affected by variables such as species, 
climate, geographic location, and pollution levels. 
The presence of numerous factors affecting honey 
quality complicates efforts to identify a set of 
markers for classification of unknown products. 
However, the presence of additives such as sugar 
syrups can alter the profile of honey products and 
can serve as an indicator of adulteration (Ulberth, 
2016; da Silva et al., 2016). According to Codex 
Alimentarius standards for honey, moisture content 
must be less than 20%, reducing sugars higher than 
60%, and sucrose levels below 5% (CAC, 2022). 
Brazilian honey samples analysed by Azeredo et al. 
(2003) had the following physico-chemical 
properties: 18.59 – 19.58% moisture content, 62.6 – 
69.1% reducing sugars, 3.5 – 5.4% sucrose, and pH 
of 3.10 – 4.05.  
 
There are several simple methods claimed to detect 
adulteration in honey, such as the flame test 
(matchstick dipped in pure honey will still burn), 
water test (adulterated honey will quickly dissolve), 
and the blot test (adulterated honey on white cloth or 
paper will soak through). However, these tests can 
be inconsistent, and there are laboratory methods 
that are more reliable (Honeys.PH, 2023). 
Authentication techniques for detecting honey 
adulteration include thin-layer chromatography, 
carbon isotopic analysis, gas chromatography, anion 
exchange chromatography, infrared-based 
spectroscopy, nuclear magnetic resonance, Raman 
spectroscopy and mass spectrometry. Many of these 
techniques require costly instruments, significant 
analytical skill, and challenging sample pre-
treatment and extraction methods. In comparison, 
infrared (IR)-based analysis, such as those based on 
the near- and mid-IR ranges, provide rapid results 
with minimal pre-processing of samples (Wu et al., 
2017; Li et al., 2017). Near-infrared spectroscopy 
(NIRS), in particular, has found numerous 
applications in the food industry. Analysis is non-
destructive and can be easily combined with 
chemometric methods of analysis (both qualitative 
and quantitative) (Cen and He, 2007). NIRS has 
been used to detect adulteration in South African 
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honey (860-2500 nm) using three different 
instruments; overall accuracy of classification was 
above 93% (Guelpa et al., 2017). A similar effort is 
needed to test honey products in the Philippines 
which are widely sold but are known to be 
adulterated with artificial sweeteners. Data 
presented by Micor (2013) showed that 8 of 14 
(57%) locally available honey and 7 of 25 (28%) 
imported brands were adulterated. The general 
objective of the present study was to develop NIRS-
based models for rapid estimation of adulteration 
levels in Philippine honey  
 

METHODOLOGY 
 

Honey Samples 
 
Typical Apis mellifera honey samples were collected 
from six different apiaries (coded as Samples A, B, 
C, D, E and F) on the main Philippine island of 
Luzon; all the apiaries were located in Baguio City 
(in Benguet province) or La Union province. 
Approximately 500 g of honey were collected from 
each apiary from December 2013 to February 2014; 
samples were stored at room temperature. Moisture 
content and oBrix of honey samples were 
determined using an Atago digital refractometer. 
 
Preparation of Adulterated Honey 
 
Sugarcane syrup was used as an adulterant and was 
prepared as a mixture of table sugar, distilled water, 
citric acid and cream of tartar; 
proportions of each component in the 
mixture were obtained from interviews 
with honey producers and could not be 
disclosed. From an initial Brix value of 
64o, the mixture was heated at 90-100oC 
until the final Brix was approximately 
70o. 
 
Undiluted honey samples had the 
following properties: 79-80°Brix, 20-
21% MC and 3.0-4.0 pH level. Samples 
were standardized to 70°Brix by gradual 
addition of distilled water to minimize 
the effect of natural variation in soluble 
solids of samples and avoid false results 
(Kelly et al., 2004, Zhu et al., 2010, Rios

-Corripio et al., 2012, Guelpa et al., 2017); samples 
were heated to 35oC to dissolve any crystals present. 
 
For each pure honey sample, sixteen 10-mL 
dilutions were prepared in test tubes from 0% to 
30% (v/v) in increments of 2%; three replicate sets 
of dilutions were prepared. Diluted samples were 
incubated at 50oC using a water bath for 30 min, 
followed by homogenization using a vortex mixer at 
low speed. Diluted samples were allowed to 
equilibrate to room temperature for 4 hours prior to 
NIR spectroscopic analysis. A total of 288 spectra 
were randomly divided into calibration (192 
samples) and validation sets (96 samples). 
 
NIR Spectral Acquisition,  
Pretreatment and Analysis 
 
Spectral acquisition was performed using 
instruments, fiber optics and software from Ocean 
Optics Inc (Florida, USA); these included a USB-
4000-VIS-NIR spectrometer (operating range of 300
-1000 nm) with Spectrasuite software, QR-200-7-
VIS-BX fiber optic cables, CUV-UV cuvette holder 
(10-mm pathlength), and a HL-2000 tungsten-
halogen lamp (360-2400 nm). The system was 
allowed to warm up for 60 min prior to data 
acquisition. Spectral data for each dilution 
represented the average of 40 scans; integration time 
was set at 7 msec. Absorption spectra of diluted 
samples was generated using distilled water as a 
reference; dark spectra was acquired with the light 

Table 1. Pre-processing methods for spectral data2 
Pretreatment Description 

Mean centering (MC) First stage in pre-processing; the average 
value of each spectra is subtracted from 
each variable of the spectra. 

Multiplicative scatter correc-
tion (MSC) 

To reduce effect of non-uniform light scat-
tering; degree of light scatter is affected by 
radiation wavelength, particle size, and 
refractive index of the material. 

Standard normal variate 
(SNV) 

Sample spectra is normalized to a mean of 
zero and a variance equal to 1. Eliminates 
interference of light scatter, and effect of 
particle size and light distance. 

Savitzky-Golay (SG)   
smoothing 

To reduce random noise from spectra 

First derivative (ID) and   
second derivative (2D)   
transformation 

Used to increase spectral resolution,      
remove baseline shifts and background 
effects, and resolve superimposed peaks. 

zSource: Viscarra-Rossel (2008); Nicolai et al (2007); Reich (2005) 
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source turned off. Only absorption spectra in the 
NIR range of 700-1000 nm was used for analysis. 
 
Different combinations of various pre-processing 
techniques (Table 1) were used to 
improve calibration models for 
estimating adulteration levels in terms 
of (a) light scattering and baseline 
correction to normalize spectra, (b) de
-noising and smoothing to improve 
the signal-to-noise ratio and reduce 
the effect of random noise, and (c) 
first-derivative (1D) differentiation to 
enhance spectral resolution. ParLeS 
software was used for pre-processing 
the spectral data; details on the pre-
processing capabilities of ParLeS are 
described by Viscarra-Rosel (2008). 
The best combinations were selected 
by generating calibration models 
using the partial least squares 
regression (PLSR) option of ParLeS. 
For each pure honey sample, the 
spectral data of the three replicate sets 
of dilutions were randomly divided 
into separate calibration and 
validation sets at a 2:1 ratio (similar to 
Chen et al., 2011). Spectral data of all 
honey samples was also analysed as a 
combined set in the same manner. For 
the calibration set, PLSR with cross-
validation was carried out using the 
leave-one-out option. Selection of the 
best calibration models was based on 
values of R2 and the ratio of 
performance to deviation (RPD) as 
generated by ParLeS; interpretation of 
R2 and RPD values is given in Tables 
2 and 3. 
 
Pre-processed spectral data at 700-
1000 nm (2-nm intervals) was also 
subjected to principal component 
analysis (PCA) to describe variations 
in spectra using synthetic variables 
generated as a linear combination of 
the original data. These synthetic 
variables, or principal components 
(PC), are not correlated to each other, 

and therefore, multi-collinearity is avoided (Oliveri 
and Forina, 2012). The number of PCs was 
determined by retaining only those with eigenvalues 
greater than one. Linear discriminant analysis 

Table 2. Guidelines for the interpretation of coefficients of    
correlation (R) and determination (R2)z 

R R2 Interpretation 

Up to ± 0.5 <0.25 Not usable in calibration 

± 0.51 - 0.70 0.26 - 0.49 Poor correlation, needs further 

± 0.71 - 0.80 0.50-0.64 Usable for rough screening 

±0.81-0.90 0.66-0.81 Suitable for screening and other 

± 0.91 - 0.95 0.83 - 0.90 
Can be used with caution in most 

± 0.96 - 0.98 0.92-0.96 
Can be used in most applications, 

± 0.99 or higher Higher than 0.98 Excellent, can be used in any 
application 

zSource: Williams (2001)   

Table 3. Guidelines for interpreting relative percentage      
deviation (RPD)Z 

RPD Classification Application 

0.0-2.3 Very poor Not recommended for 
use 

2.4-3.0 Poor Very rough screening 

3.1-4.9 Fair Screening 

5.0-6.4 Good Quality control 

6.5-8.0 Very good Process control 

8.1 or higher Excellent Any application 
zSource: Williams (2001)  

Table 4. Physico-chemical properties2 of Apis mellifera honey 
from Northern Luzon, Philippines 

Honey 
Sample 

% MC °Brix pH %TS %RS %
AS 

A 18.0 81.5 3.6 81.5 69.5 12.0 

B 18.4 80.0 3.6 79.4 69.3 10.1 

C 19.0 79.1 3.8 77.3 65.3 12.0 

D 18.0 80.5 3.4 72.6 68.3 4.3 

E 18.5 79.7 3.7 76.4 62.3 14.1 

F 18.3 80.0 3.6 79.8 65.7 14.1 

Average 18.4 80.1 3.6 77.8 66.7 11.1 

Published 
datay 

17.1 - 3.8 68.5 64.4 0.4 

  - 
65.7-79.6 

— — 60.7-
81.8 

— 

  19.2 - 3.6 - 66.2 4.5 
zFor each honey sample, values represent the mean of three replicate samples; MC - 
moisture content, TS - total sugars, RS - reducing sugars, AS - apparent sucrose 
 

Source: yYucel and Sultanoglu (2013); Li et al (2017); Azeredo et al (2003) 
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(LDA) was then used 
to analyze PCs to 
classify diluted honey 
samples according to 
their level of apparent 
sucrose and degree of 
adulteration. 
 
PCA and LDA were 
performed using the 
Microsoft Excel 
XLSTAT add-in to 
detect adulteration 
based on sucrose level, 
and to predict degree 
of adulteration based 
on dilution level. From 
the total collection of 
samples, 192 and 96 
honey samples were 
randomly selected as 
calibration and 
validation sets, 
respectively. Samples 
with apparent sucrose 
higher than 6% were 
considered as 
adulterated (CAC, 
2022); samples with 
lower levels were 
designated as 
authentic. Honey 
samples with dilution 
levels of 0%, 1-9%, 10
-19%, and 20-30% 
were considered as 
pure, low-level 
adulterated, medium-
level adulterated, and 
high-level adulterated samples, respectively.  
 
Measurement of  
Sugar Levels 
 
Standard wet chemistry methods for measuring total 
sugars (TS) and reducing sugars (RS) were used for 
developing NIR calibration models and for 
validation. The phenol sulfuric method described by 
Albalashmeh et al. (2013) was used for determining 
TS levels, while the dinitrosalicylic (DNS) method  

 
described by Goncalves et al. (2010) was used for 
measuring RS in adulterated honey samples. For TS 
and RS, absorbance was measured at 490 nm and 
540 nm, respectively, using a UV-VIS 
spectrophotometer. Apparent sucrose was calculated 
as the difference between TS and RS. 

 
 
 

Figure 1. Comparison of representative near-infrared spectra (700-1000 nm) of 
authentic and adulterated honey samples adjusted to 70

o 
Brix 
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RESULTS AND 
DISCUSSION 
 
Physico-chemical Properties  
and Pollen Content of 
Honey Samples 
 
Based on standards of the 
Codex Alimentarius 
Commission (CAC), moisture 
content of honey should not 
exceed 20%, reducing sugars 
should not be less than 60%, 
and sucrose content not 
greater than 5% (CAC, 2022). 
MC is dependent on the 
harvest season and local 
weather conditions; studies of 
honey from different 
countries by Azeredo et al., 
(2003), Escuredo et al., 
(2013) and Yücel and 
Sultanoğlu (2013) showed 
MC ranges of 18.6-19.6% 
(Brazil), 16.9-18.0% 
(northwest Spain) and 14.0-
20.8% (Hatay, Turkey), 
respectively. Level of RS is 
also affected by climate, as 
well as flower types (Tornuk 
et al., 2013); on the other 
hand, sucrose levels are an 
important indicator of honey 
maturity and adulteration. High levels of sucrose 
may be a sign of adulteration with inexpensive 
sweeteners, early harvesting, or extended feeding of 
bees with sucrose syrup (Escuredo et al., 2013). 
Table 4 shows the physico-chemical properties of 
honey gathered from the sampling sites; published 
data is included for comparison. Results show that 
all the honey samples pass the CAC (2022) 
standards for MC (less than 20%) and RS (higher 
than 60%). However, in terms of apparent sucrose, 
all the samples except Sample D showed excessive 
levels.  
 
Partial Least Squares Regression Models 
 
Figure 1 shows the NIR spectra of representative 
honey samples that were pure or adulterated. As 

adulteration level increased, absorbance values also 
increased regardless of the source. Sample C 
showed the greatest increase in absorbance among 
the six samples, possibly due to differences in the 
profile of honey sources. 
 
Results of PLSR for predicting level of adulteration, 
reducing sugar level, and apparent sucrose level are 
shown in Table 5, 6 and 7, respectively. The best 
results were obtained for predicting adulteration 
level in the wavelength range of 700-1000 nm, with 
R2 in the range of 0.835 – 0.988 and 0.918 – 0.987 
for the calibration and validation sets, respectively 
(Table 5). Furthermore, calibration models using 
spectral data without any pretreatment still obtained 
R2 > 0.930; when validated, R2 for all samples was 
higher than 0.940. Recommended applications based 

Table 5. Partial least squares regression to predict level of adultera-
tion of individual honey samples using near-infrared spectral range 
of 700-1000 nm 
Sample Spectral 

Pretreat-
ment2 

No. of 
Fac-
tors 

Calibration Setv Validation Set 

R2 
RMS

E RPD R2 
RMS

E RPD 

A None 4 0.972 1.59 6.03 0.976 1.66 5.82 

  SG 4 0.973 1.56 6.15 0.978 1.65 5.86 

  SG-MC 4 0.972 1.57 6.10 0.975 1.79 5.40 

  SG-1D-MC 10 0.958 1.96 4.89 0.963 2.64 3.67 

B None 4 0.931 2.40 3.85 0.942 2.20 4.01 

  SG 4 0.945 2.15 4.30 0.941 2.16 4.09 

  SG-MC 3 0.952 2.00 4.62 0.951 1.89 4.67 

  SG-1D-MC 2 0.835 3.70 2.50 0.918 2.50 3.52 

C None 5 0.985 1.11 8.29 0.970 1.73 5.26 

  SG 5 0.983 1.19 7.75 0.962 1.84 4.97 

  SG-MC 5 0.985 1.09 8.41 0.973 1.55 5.89 

  SG-1D-MC 5 0.988 0.99 9.27 0.978 1.48 6.18 

D None 4 0.958 1.87 4.95 0.962 2.64 3.56 

  SG 4 0.949 2.04 4.52 0.947 3.17 2.95 

  SG-MC 4 0.947 2.10 4.39 0.944 3.26 2.88 

  SG-1D-MC 5 0.940 2.21 4.17 0.940 2.36 3.97 

E None 4 0.915 2.52 3.49 0.987 2.05 4.53 

  SG 3 0.927 2.34 3.75 0.980 2.35 3.95 

  SG-MC 2 0.939 2.14 4.12 0.975 2.33 3.99 

  SG-1D-MC 2 0.912 2.56 3.44 0.959 3.34 2.78 

F None 4 0.968 1.66 5.68 0.967 1.72 5.39 

  SG 4 0.961 1.84 5.14 0.964 1.74 5.33 

  SG-MC 3 0.959 1.88 5.02 0.960 1.81 5.12 

  SG-1D-MC 2 0.965 1.74 5.42 0.964 1.79 5.17 
:SG - Savitzky-Golay; MC - mean centering; ID - 1st derivative   
yWith leave-one-out cross validation; RMSE - root mean square error; RPD - ratio of 
performance to deviation  
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 Table 6. Partial least squares regression to predict reducing sugars of individual honey samples 
using near-infrared spectral range of 700-1000 nm. 

Sample Spectral 
Pretreat-

mentz 

No. of    
Factors Calibration Sety   Validation Set 

R2 RMSE RPD   R2 RMSE RPD 

A None 2 0.892 1.577 3.09  0.955 1.087 4.43 

SG 3 0.884 1.647 2.96  0.917 1.497 3.21 

SG-MC 2 0.908 1.450 3.36  0.914 1.416 3.40 

SG-1D-MC 1 0.903 1.491 3.27  0.887 1.758 2.74 

B None 3 0.748 2.454 2.03   0.709 2.464 1.76 

SG 3 0.733 2.507 1.98  0.708 2.386 1.82 

SG-MC 3 0.726 2.563 1.94  0.740 2.266 1.91 

SG-1D-MC 2 0.630 2.990 1.66   0.662 2.795 1.55 

C None 7 0.626 2.831 1.64  0.531 3.112 1.44 

SG 4 0.668 2.633 1.77  0.707 2.379 1.89 

SG-MC 6 0.694 2.555 1.82  0.633 2.747 1.64 

SG-1D-MC 2 0.613 2.877 1.62  0.751 2.211 2.03 

D None 2 0.590 2.936 1.58   0.770 2.570 1.81 

SG 2 0.601 2.895 1.60  0.778 2.502 1.85 

SG-MC 4 0.645 2.734 1.69  0.690 2.919 1.59 

SG-1D-MC 2 0.609 2.861 1.62   0.749 2.587 1.79 

E None 2 0.693 2.362 1.83  0.810 1.769 2.27 

SG 2 0.694 2.363 1.83  0.833 1.641 2.45 

SG-MC 2 0.691 2.372 1.82  0.865 1.499 2.68 

SG-1D-MC 2 0.620 2.642 1.64  0.832 1.913 2.10 

F None 3 0.779 2.127 2.15   0.689 2.310 1.68 

SG 3 0.775 2.148 2.13  0.728 2.144 1.81 

SG-MC 1 0.815 1.938 2.36  0.823 1.667 2.33 

SG-1D-MC 1 0.805 1.989 2.30   0.843 1.599 2.43 
zSG - Savitzky-Golay; MC - mean centering; 1D - 1st derivative 
yWith leave-one-out cross validation; RMSE - root mean square error; RPD - ratio of performance to deviation 
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Table 7. Partial least squares regression to predict apparent sucrose content of individual honey    
samples using near-infrared spectral range of 700-1000 nm. 

Sample Spectral          
Pretreatmentz 

No. of      
Factors 

Calibration Sety   Validation Set 

R2 RMSE RPD   R2 RMSE RPD 

A None 3 0.863 1.770 2.74  0.852 1.960 2.38 

SG 3 0.868 1.737 2.80  0.857 1.900 2.46 

SG-MC 2 0.870 1.722 2.82  0.881 1.634 2.86 

SG-1D-MC 2 0.875 1.687 2.88  0.872 1.840 2.54 

B None 2 0.696 2.481 1.64   0.635 2.761 1.52 

SG 2 0.699 2.758 1.85  0.634 2.780 1.51 

SG-MC 1 0.714 2.210 1.90  0.637 2.725 1.54 

SG-1D-MC 1 0.724 2.742 1.94   0.663 2.644 1.59 

C None 3 0.586 2.882 1.56  0.716 1.989 1.84 

SG 1 0.624 4.011 1.12  0.754 3.291 1.11 

SG-MC 6 0.726 2.336 1.92  0.526 2.951 1.24 

SG-1D-MC 4 0.608 2.795 1.61  0.732 1.915 1.92 

D None 2 0.676 2.729 1.79   0.714 2.706 1.71 

SG 2 0.676 2.730 1.79  0.712 2.719 1.70 

SG-MC 3 0.668 2.788 1.75  0.666 3.187 1.45 

SG-1D-MC 2 0.675 2.737 1.78   0.722 2.703 1.71 

E None 6 0.688 2.495 1.80  0.756 2.507 1.56 

SG 3 0.657 2.594 1.73  0.849 1.761 2.22 

SG-MC 2 0.656 2.597 1.73  0.863 1.553 2.51 

SG-1D-MC 2 0.652 2.622 1.71  0.825 2.298 1.70 

F None 1 0.851 2.024 2.42   0.739 2.687 1.32 

SG 1 0.851 2.220 2.21  0.739 2.985 1.19 

SG-MC 1 0.836 1.958 2.50  0.743 2.199 1.61 

SG-1D-MC 2 0.848 1.880 2.61   0.679 2.404 1.48 

zSG - Savitzky-Golay; MC - mean centering; 1D - 1st derivative 
yWith leave-one-out cross validation; RMSE - root mean square error; RPD - ratio of performance to deviation 
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on RPD values for spectra 
without pretreatment showed 
that calibration models could be 
used for screening samples B, 
D, and E, while models for 
samples A, C, and F could be 
used for higher-level 
applications such as quality 
control or process control. The 
number of factors for PLSR 
models was 5 or less, except for 
sample A honey spectra 
pretreated using SG-1D-MC 
which needed 10 factors.  
 
In comparison, models for 
reducing sugars and apparent 
sucrose were less consistent 
across samples. For reducing 
sugars, calibration R2 for sample 
A honey had a range of 0.884 – 
0.908, while calibration R2 for 
sample D honey was 0.590 – 
0.645 (Table 6). Sample A 
honey also had the best 
calibration R2 for apparent 
sucrose (0.863 – 0.875), while 
sample C had the lowest R2 
(0.586 – 0.726) (Table 7). 
When spectral data of all honey 
samples were combined, the R2 
value was less than 0.78 and 
0.87 for calibration and 
validation sets, respectively 
(data not shown). Further 
sampling may be needed to 
strengthen the robustness of 
calibration models for 
predicting sugar levels. 
 
 
Principal Component Analysis  
and Linear Discriminant Analysis 
 
For spectra pre-treated with MSC and subjected to 
PCA, the eigenvector values of the first four PCs 
showed similar grouping of scores at 938 – 940 nm 
corresponding to water and two PCs for sugar at 838 
– 840 nm. Similarly, for spectra subjected to SG – 

1D – MC, eigenvector values showed similar 
grouping of scores at 978-980 nm (4 PCs), 984-986 
nm (2 PCs) and 992-994 nm (2 PCs) corresponding 
to water; groupings at 836-838 nm (4 PCs) and 978-
980 nm 314 (4 PCs) were also observed that 
correspond to sugar. These identified wavelengths 
are consistent with previous research of Williams 
and Norris (1987) (Table 8). Carbohydrates include 
saccharides and polysaccharides (e.g. sugars and 
starches) and cellulose (e.g. lignin-type bio-

Figure 2. Scatterplot of the first two principal components of honey    
samples at different levels of adulteration using LDA for calibration (top) 

and validation (bottom) sets. Figures in percent correspond to the          
contribution of each principal component to the prediction.  

 



Philippine Journal of Agricultural and Biosystems Engineering Vol. 19, No. 2 

58 

 

Table 9. Classification accuracy (%) of linear discriminant analysis of near-infrared spectra of honey 
samples according to level of adulterationz 

Actual Adulteration 
Levely 

Predicted Adulteration Level Total Samples 

None Low Medium High 

C A L I B R A T I O N    S E T 

None 100.00 0.00 0.00 0.00 12 

Low 0.00 100.00 0.00 0.00 48 

Medium 0.00 1.67 98.33 0.00 60 

High 0.00 0.00 0.00 100.00 72 

     192 

V A L I D A T I O N   S E T 

None 0.00 0.00 0.00 100.00 6 

Low 0.00 75.00 20.83 4.17 24 

Medium 0.00 0.00 90.00 10.00 30 

High 0.00 0.00 8.33 91.67 36 

zHighlighted values indicate percentage of correctly classified samples 
yNone = pure honey, Low = 1-9%, Medium = 10-19%, High = 20-30% 

Table 8. Absorption bands of selected molecules 
in the NIR wavelength range (nm)z 

Water Sugar Starch Cellulose 

834 838 878 860 

938 888 901 905 

958 913 918 920 

978 978 979 978 

986 1005 1030 1058 

994  1053  

1010    

1030    

1099       

zSource: Williams and Norris (1987) 

Table 10. Classification accuracy (%) of linear 
discriminant analysis of near-infrared spectra of 
honey samples according to level of apparent 
sucrosez 

Actual Level of           
Apparent Sucrosey 

Predicted Level of    
Apparent Sucrose 

Total    
Samples 

Authentic 
Honey 

Adulterated 
Honey 

C A L I B R A T I O N   S E T 

Authentic Honey 100 0 26 

Adulterated Honey 0 100 166 

V A L I D A T I O N   S E T 

Authentic Honey 0 100 11 

Adulterated Honey 0 100 85 

zHighlighted values indicate percentage of correctly classified   
samples 
yAuthentic Honey < 6% apparent sucrose; Adulterated Honey > 
6% apparent sucrose 
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molecules) that consist mostly 
of aliphatic cyclic groups with 
attached OH groups and either 
linkage. Hence, the functional 
group at 836 nm is C-H 
methylene C-H, associated 
with branched aliphatic RC
(CH3)3 or RCH(CH3)2 with its 
material type (hydrocarbons, 
aliphatic). At 979 nm, the 
functional group is O-H from 
water at near 0°C (Workman 
and Weyer, 2012). 
LDA showed that 99.5% and 
81.3% of all honey samples of 
the calibration and validation 
sets, respectively, could be 
correctly classified (Table 9) 
based on level of adulteration. 
The best results were obtained 
for samples with high levels of 
adulteration. Fourteen principal 
components were needed to 
classify honey according to 
adulteration level; a plot of the 
first two PCs is shown in 
Figure 2. In terms of apparent 
sucrose, 100% and 88.5% of all 
calibration and validation 
samples were correctly 
classified by LDA, respectively 
(Table 10); only one principal 
component was needed for 
separation (Figure 3). It should 
be noted, however, that all the 
authentic honey samples in the 
validation set were 
misclassified as adulterated. 
The results highlight the need 
for a larger set of pure samples to incorporate into 
the calibration set to improve classification. 
 

SUMMARY AND CONCLUSIONS 
 
The present study showed that near infrared 
spectroscopy could potentially be used for 
predicting adulteration levels in Philippine honey. 
Honey sourced from six (6) different farms was 
adulterated with different amounts of prepared 

sucrose solutions and scanned with short-wave near-
infrared light. Analysis of pre-processed spectra 
(700-1000 nm) showed that level of adulteration, 
level of reducing sugars, and total sugars could be 
predicted using partial least squares regression. 
Significant wavelengths were identified using 
principal component analysis and linear 
discriminant analysis; previous studies have 
associated these wavelengths with chemical bonds 
present in sugar and water. The best calibration and 
validation results were obtained using PLSR to 

Figure 3. Separation of authentic and adulterated honey based on apparent 
sucrose content using linear discriminant analysis on calibration (top) and 
validation (bottom) sets. Figures in percent correspond to the contribution 

of each principal component to the prediction. 
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predict adulteration level (from pure honey to highly 
adulterated honey), indicating the potential of NIRS 
to rapidly test samples.  
 

RECOMMENDATIONS 
 
Further studies are needed to strengthen calibration 
models through more extensive sampling with 
respect to honey sources, production areas, and 
sampling times. This will help build up a spectral 
library of pure honey types that can be used for 
identifying and authenticating these highly-valued 
food products, and rapidly determining compliance 
with national and international product standards. 
The world standard for honey (CODEX STAN 12-
1981 Rev. 1 (1987)) defines and specifies different 
types of honey according to source and method of 
extraction; limits on moisture content, sugar levels, 
and insoluble solids content are also described 
(Krell 1996). The Philippine Bureau of Agriculture 
& Fishery Standards (BAFS) has recently developed 
a product standard for honey (PNS/BAFS 
185:2022), with specified limits on moisture 
content, sugar content (sucrose, fructose, and 
glucose), insoluble solids content, and carbon-stable 
isotope ratio. The use of NIRS in the honey industry 
should be increased to support these standards, 
ensure that products can be rapidly tested, and 
consumers protected from food fraud. 
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